铜陵大数据培训班
铜陵大数据培训班
- 上课时段:详见详情
- 教学点:1个
- 开班时间:滚动开班
- 课程价格:请咨询
- 已关注:748
- 优惠价格:请咨询
- 咨询电话: 400-008-6280
大数据是一种在获取、存储、管理、分析等方面大大超出了传统数据库软件工具能力范围的数据集合。它具有大量的数据规模、快速的数据流转、多样的数据类型和价值密度低四大特征。 未来大数据相关人才缺口巨大。
大量优质岗位等你来
薪资待遇随工作年限呈阶梯式上涨
只有想不想学,没有能不能学
理论、实战双向并行,奠定入行扎实基础
第一阶段 Java语言基础 | Java语言基础: Java语言入门、基本语法、面向对象、常用API、异常、集合、IO流、多线程、网络编程、反射、JDK新特性、MySQL数据库、JDBC 培养方向: 了解Java语言的特征和应用领域;掌握JDK、JRE和JVM的作用;能够成功搭建Java开发环境;完成HelloWorld程序的编写;掌握IDE工具IDEA的使用方式; 掌握Java基本语法中的常量、变量的声明和使用;掌握Java中的运算符、数据类型及其相互转换;掌握分支结构、循环结构、方法的定义和使用;掌握数组的使用,理解数组的内存结构; 掌握面向对象的编程思想;掌握类和对象的定义和使用;理解封装、继承、多态等特性;掌握抽象类、接口的特点和使用方式;充分理解并运用Java面向对象思想来进行程序开发; 掌握Java中的常用类和工具类的使用,能够使用这些常用类和工具类解决多种问题; 掌握Maven项目构建和依赖管理、掌握Maven的继承和聚合; |
第二阶段 Hadoop技术栈 | Hadoop技术栈 Linux、Hadoop、ZooKeeper、Hive、HBase、海王星大数据金融平台 培养方向: 掌握Linux操作系统安装及常用命令;掌握shell脚本编程; 掌握大数据架构Hadoop原理及编程应用;掌握Hadoop三大组件的使用方式、方法以及Hadoop调优; 掌握ZooKeeper协管理器工作机制以及动态感知原理及使用; 掌握Hive数据仓库的使用及调优原理; 掌握HBase数据库的开发、使用以及调优; 掌握消费金融业务处理流程;掌握根据业务制定合理技术框架(技术选型)的能力;大量数据的日志采集方案;数仓的分层搭建以及数仓建模;掌握大量数据的ETL处理方式;掌握工作流调度解决方案;掌握即席查询工具使用及其原理;掌握数据可视化报表工具的使用;掌握数据治理框架的原理以及使用;掌握集群指标监控工具的使用 职业方向: Hadoop开发工程师、数据仓库工程师、ETL开发工程师、离线开发工程师 |
第三阶段 Spark技术栈 | Spark技术栈 Scala、Kafka、Spark、交通流量实时可视化大屏 培养方向: 掌握Scala基本语法和进阶的使用,为学习Spark、Flink框架打下基础; 掌握消息队列概念、Kafka原理架构、日志合并、消息检索; 掌握分布式内存计算、RDD、DataSet、DStream概念; 掌握离线计算、流式计算; 掌握可视化大屏内在价值与用途;掌握实时流数据分析业务处理流程;掌握Flume+Kafka+Sparkstreaming+Redis架构整合;掌握Springboot的使用;掌握websocket操作使用;了解Echarts的使用方式 职业方向: Spark开发工程师、实时开发工程师 |
第四阶段 Flink流式处理框架 | Flink流式处理框架: Flink、ClickHouse、畅游天涯旅游实时分析项目 培养方向: 掌握Flink的原理;掌握Flink的使用以及与其他技术的整合; 掌握ClickHouse架构、速度快的原因;掌握ClickHouse数据库和表引擎;掌握ClickHouse基本操作以及和spark、flink的整合; 掌握旅游行业业务流程;掌握Flink在实时计算业务中的使用;掌握自定义Flink source和sink来生成和消费Kafka数据;掌握Flink和ClickHouse整合已存储数据;掌握搜索引擎Elasticsearch;掌握Flink和Elasticsearch整合;掌握基于Flink CEP处理复杂事件 职业方向: Flink开发工程师、实时开发工程师、实时数仓工程师 |
第五阶段 项目实战 | 项目实战: EWR消费信用风险舆情系统、Monoceros物流大数据平台、物流Kubernetes+Docker项目迁移 培养方向: 掌握信贷金融业务处理流程;掌握根据业务制定合理的技术框架(技术选型);掌握当下流行的数据中台概念;掌握前台工作整体机制以及技术应用;掌握后台综合分析展示应用系统;掌握大量数据的综合采集方案;掌握大量数据的ETL处理方式;掌握工作流调度解决方案;掌握集群指标监控工具的使用; 掌握基于亿级订单的物流大数据平台的研发;掌握基于Flink实现仓库货物、仓储车运动轨迹、包裹追踪等多维度业务分析;具备基于HDP平台收集数据资源的能力,实现秒级OLAP分析; 掌握Docker容器化技术以及应用;掌握Kubernetes核心功能以及在项目中的部署应用 职业方向: 数据仓库工程师、ETL开发工程师、离线开发工程师、实时开发工程师、数据中台工程师 |
第六阶段 就业指导 | 就业指导: 企业面试前期准备与技巧、专业指导、企业面试复盘 课程内容: 职业规划讲解、简历注意事项详解、就业情况分析简历制作(个人技能、项目经验、自我评价); 简历审核修正、常见面试题的讲解、技术简历的指导与优化、强化实战项目(项目模块的介绍,业务流程的梳理); 真实面试复盘(晚自习时间)(总结学员面试中的问题,进行针对性的辅导以及相关面试题的讲解) 培养方向: 从简历、面试技巧等层面助力学员,培养学员沟通表达能力 让学员清晰了解职业发展规划,明确自身定位,找到适合自身发展的工作; 通过项目强化、面试专项指导、面试复盘等,学员能更好就业 |
一路暖心服务,不怕您货比三家
大数据培训资料
其实大数据并不是一种概念,而是一种方法论。大数据可以实现的应用可以概括为两个方向,一个是精准化定制,第二个是预测。比如像通过搜索引擎搜索同样的内容,每个人的结果却是大不相同的。
一.如何能够接触大数据?
数据在现实生活中无处不在,而且随着时间的推移会积累的越来越多。通过谷歌搜索就可以使你几乎能够找到所有的数据库。如何访问和使用这些数据主要分为以下六个方面:
1、数据提取
在进行任何事情之前,都需要使用一些数据。现实中可以通过多种方式获得所需要的数据,但通常的做法是通过API调用公司的web服务获得相关数据。
2、数据存储
大数据面临的主要难题之一是如何存储并管理它,这完全取决于负责建立数据存储的预算和个人具备的专业知识,因为对于大多数数据管理者来说,都需要具备一些编程方面的知识。良好设计的数据库允许用户安全地、直接地存储和查询数据。
3、数据清洗
在考虑如何存储数据之前,需要确保它是干净的,且转化成能够被接受的格式。
4、数据挖掘
数据挖掘是从数据库中洞察一些信息的过程,这样做的目的是根据当前持有的数据提供预测并作出决定。
5、数据分析
一旦收集了所有的数据后,就需要对其进行相关任务的分析、寻找有趣的模型或趋势。
6、数据可视化
对于数据处理而言,对其最重要的可能是数据可视化。可视化是在完成所有工作后输出一个能被任何人理解的可视化载体,这可以通过使用编程语言或软件实现。
二.与大数据相关的职业
随着市场对大数据相关需求的增加,与之相关的职业需求数量也在上升。根据相关机构的统计研究,一个大数据工程师每年的平均工资是150000美元。
根据相关研究报道,超过80%的数据科学家有硕士学位,使得他们能够从事这个领域的任何工作。
扫描二维码免费领取试听课程
登录51乐学网
注册51乐学网