还没有找到合适的课程?赶快告诉课程顾问,让我们顾问马上联系您! 靠谱的培训课程,省时又省力!
大数据开发可以进行大数据工程师认证,数据分析类则可以进行数据分析师认证。这些证书的认证都是在你已经掌握课程的基础上进行。如果零基础可以先进行大数据相关课程学习,自学或者进行大数据培训都行,最好是先去提供认证的机构进行咨询,看看需要掌握哪些技能。
想要入门大数据,先要了解大数据生态圈
课程从大数据的基石Hadoop生态圈入手,逐步将讲解它的核心组件特性
JavaSE | JavaWeb | JavaEE 框架 |
Java 基本语法、面向对象、API、jvm 参数... | 三大框架重构EasyMall 项目、SpringBoot重构EasyMall 项目 | 3Hive、SparkMapReduce、Storm |
大数据互联网架构 | 大数据框架 | 数据挖掘与机 器学习算法 |
Springclound 整合、Redis、RabbitMQ、Lucene、ES | 离线分析、实时分析、内存分析 | Echarts、JSP、JS、EasyUI |
课程大纲
第一章:课前基础工具学习 | 第二章:课前业务知识学习 | 第三章:业务数据分析(Excel) |
主要内容 ・Excel 预习视频・数据库预习视频・Power BI 预习视频 可解决的现实问题 解决0基础学员数据分析工具薄弱的问题 可掌握的核心能力 提前掌握基础数据分析工具的使用,为课程学习打好基础 | 主要内容 ・业务前台人员数据思维训练营 可解决的现实问题 用户画像没有摸清,广告投放连本都收不回,运营流程太混乱,销售转化不理想 可掌握的核心能力 掌握从用户思维做营销增量,借助数据思维从商业顶层俯视业务生命周期,运用数据框架梳理公司整体业务模型 | 主要内容 ・表格结构数据・数据驱动型业务管理・数据埋点・数据治理・指标的设计与应用・可视化分析方法・业务分析方法・业务模型应用・业务分析报告撰写 可解决的现实问题 解决实际工作中不会业务分析、不会撰写业务分析报告的问题 可掌握的核心能力 1、掌握依据电商、互联网、零售行业的数据分析场景介绍,撰写业务分析报告的全流程 2、掌握从客户、产品、运营、行为效果等维度出发,搭建业务指标体系,综合使用可视化分析方法、业务分析方法。 |
第四章:统计基础 | 第五章:多维数据分析 | 第六章:推断性统计 |
主要内容 ・数据分析的基本概念・描述性统计与数据预处理・统计分布 可解决的现实问题 缺失值处理,冗余处理,数据标准化 可掌握的核心能力 1、掌握通过统计基础可初步掌握数据分析的基本概念 2、掌握描述性统计的数据集成 3、掌握数据标准化和数据预处理 | 主要内容 ・表结构数据的特征与获取・数据加工与使用・多表透视分析・透视分析方法・多维数据模型 综合实战案例:・电商综合运营分析仪表板・产品进销存追踪监控看板・电商运营分析驾驶舱・服装行业销售情况分析・地产企业盈利分析 可解决的现实问题 解决使用商业智能报表分析业务、监控业务的问题 可掌握的核心能力 1、掌握使用 Power BI 搭建可视化分析报表的全流程; 2、掌握表结构数据的获取、加工、数仓应用、多表透视分析; 3、掌握在客户分析、产品分析、运营分析、市场分析、销售分析等场景下制作可视化分析报表 | 主要内容 ・参数估计・假设检验・AB Test・带检验的AB Test分析运营方案 可解决的现实问题 解决实际情况中根据样本对总体特征的推断性统计问题 可掌握的核心能力 1、掌握假设性检验的方法 2、掌握推断性统计 3、掌握AB Test的分析运营方案 |
第七章:MySQL 数据库 | 第八章:数据管理与治理 | 第九章:数据架构 |
主要内容 ・数据库基本概念・DDL・DML・单表查询・多表查询・常用函数・SQL大厂面试题 实战案例:・电商多表查询・零售业多表查询 可解决的现实问题 解决从数据库提取目标数据的问题,实现单表和多表查询 可掌握的核心能力 1、掌握 MySQL 数据库基本概念,常用函数、DDL 数据定义语言及 DML 数据操作语言 2、掌握单表查询、多表查询查询方法,查询结果排序、限制查询等方法 3、掌握大厂 MySQL 面试题 | 主要内容 ・企业决策的四个层次・企业数据分析能力的演进・企业运营和操作数据应用・数据管理基础知识・DMBOK 知识体系・企业数据能力建设・数据治理实操框架 可解决的现实问题 提高企业的运营和数据能力建设 可掌握的核心能力 1、掌握企业决策的四个层次及企业数据能力建设 2、掌握企业数据分析、企业运营和操作数据应用 3、掌握数据管理基础知识和 DMBOK 知识体系 4、掌握数据治理实操框架 | 主要内容 ・数据架构的基本概念・数据模型介绍・数据建模基础・数据建模方法・数据建模规范化・数据建模案例 可解决的现实问题 学习数据架构的基本概念,模型介绍以及建模案例 可掌握的核心能力 1、掌握数据架构及数据建模基础知识 2、掌握数据建模方法及数据建模规范化 3、学习数据建模案例 |
第十章:Hive SQL | 第十一章:综合项目实战 | 第十二章:Python 编程基础 |
主要内容 ・Linux 系统常用命令・分布式存储与计算(Hadoop)・Hive 架构原理及数据类型・HiveQL 与应用 可解决的现实问题 系统安装及部署,架构原理及应用 可掌握的核心能力 掌握 Linux 的常用命令和分布式存储与计算,Hive 架构原理及数据类型 | 主要内容 ・跨国企业完整数据分析实战案例・学生探索性实操制作分析报告・项目现场专家评审与 1 V 1 指导 可解决的现实问题 综合运用业务分析工具,解决数据运营和数据营销问题 可掌握的核心能力 老师指导还原两大数据分析项目全流程,综合使用 SQL、Excel、Power BI 等工具以及业务数据分析方法,得到高价值业务数据分析报告。 | 主要内容 ・Python 与 Anaconda 简介・Python 标准数据类型・Python 基本语法・控制流・自定义函数 可解决的现实问题 解决海量数据处理的的编程语言基础 可掌握的核心能力 掌握 Python 基础编程的能力,为处理海量数据奠定基础 |
大数据培训机构推荐十家名单:(排名不分先后) 1、达内教育 2、汇智动力 3、火星时代 4、完美动力 5、博为峰 6、天琥教育 7、CGWANG教育 8、上海交大南洋学院 9、上元教育 10、火星人教育 大数据的培训机构并没有什么排名名单,全部都是网上随便编排的排名,并没有什么作用。 |
数据清洗的原理是什么
数据清洗是利用相关技术将“脏”数据转换为满足质量要求的数据。同一值的不同表示、拼写错误、不同的命名习惯、不合法的值以及空值都会导致“脏”数据出现,通过定义好的数据清洗策略和清洗规则(即数理统计技术、数据挖掘技术等清洗策略)对“脏”数据进行清洗,得到满足数据质量要求的数据。需要注意的是,数据清洗的目的是解决“脏”数据问题,即不是将“脏”数据洗掉,而是将“脏”数据洗干净。干净的数据指的是满足质量要求的数据。
大数据的起源
随着互联网的快速发展,每天产生的数据越来越多,数据存储、数据中心和大数据概念也随之产生。从大数据的价值与应用、大数据与数字经济的关系到国家大力支持大数据的发展,大数据已经成为人们认识复杂系统的新思维方式,推动经济变革增长的新引擎,提高国家综合能力的新工具,加强政府管理的新思维。因此,大数据的起源发展离不开大数据的广泛应用。
可视化分析
大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了。
大数据基于MPP架构的新型数据库集群
采用Shared Nothing架构,结合MPP架构的高效分布式计算模式,通过列存储、粗粒度索引等多项大数据处理技术,重点面向行业大数据所展开的数据存储方式。具有低成本、高性能、高扩展性等特点,在企业分析类应用领域有着广泛的应用。较之传统数据库,其基于MPP产品的PB级数据分析能力,有着显著的优越性。自然,MPP数据库,也成为了企业新一代数据仓库的最佳选择。
大数据专业要学的内容分为两种
大数据开发:Ja-va、大数据基础、Hadoop体系、Scala、kafka、Spark等内容;数据分析与挖掘:Python、关系型数据库、文档数据库、内存数据库、数据处理分析等。
hive 跟hbase的区别
共同点都是用hadoop作为底层存储,区别:hive是为了减少mrjobs编写工作的批处理系统,处理速度慢。hive本身不存储数据和计算数据,依赖于hadoop,纯逻辑表。hbase是为了hadoop对实时操作的缺陷的项目,处理速度快,是物理表,提供一个超大的内存hash表,方便查询操作。
扫描二维码免费领取试听课程
登录51乐学网
注册51乐学网