拉萨计算机培训机构
服务热线:400-008-6280

拉萨大数据培训班

拉萨大数据培训班

  • 上课时段:详见详情
  • 教学点:1个
  • 开班时间:滚动开班
  • 课程价格:请咨询
  • 已关注:748
  • 优惠价格:请咨询
  • 咨询电话: 400-008-6280
授课学校:拉萨计算机培训机构 (点击获取校区地址)

课程介绍

中公优就业大数据培训班

  大数据是一种在获取、存储、管理、分析等方面大大超出了传统数据库软件工具能力范围的数据集合。它具有大量的数据规模、快速的数据流转、多样的数据类型和价值密度低四大特征。 未来大数据相关人才缺口巨大。


大量优质岗位等你来


大数据人才缺口


薪资待遇随工作年限呈阶梯式上涨


薪资待遇随工作年限呈阶梯式上涨


只有想不想学,没有能不能学


我是零基础零基础入学勤能补拙我想转行现有工作枯燥,工资太低我想技能提升已有的技术太落伍 担心被企业淘汰我是应届毕业生求职压力大 同专业市场需求饱和我是在校大学生对所学专业没有兴趣 为日后就业提早打算


理论、实战双向并行,奠定入行扎实基础


第一阶段


Java语言基础

Java语言基础:

Java语言入门、基本语法、面向对象、常用API、异常、集合、IO流、多线程、网络编程、反射、JDK新特性、MySQL数据库、JDBC

培养方向:

了解Java语言的特征和应用领域;掌握JDK、JRE和JVM的作用;能够成功搭建Java开发环境;完成HelloWorld程序的编写;掌握IDE工具IDEA的使用方式; 掌握Java基本语法中的常量、变量的声明和使用;掌握Java中的运算符、数据类型及其相互转换;掌握分支结构、循环结构、方法的定义和使用;掌握数组的使用,理解数组的内存结构; 掌握面向对象的编程思想;掌握类和对象的定义和使用;理解封装、继承、多态等特性;掌握抽象类、接口的特点和使用方式;充分理解并运用Java面向对象思想来进行程序开发; 掌握Java中的常用类和工具类的使用,能够使用这些常用类和工具类解决多种问题; 掌握Maven项目构建和依赖管理、掌握Maven的继承和聚合;

第二阶段


Hadoop技术栈

Hadoop技术栈

Linux、Hadoop、ZooKeeper、Hive、HBase、海王星大数据金融平台

培养方向:

掌握Linux操作系统安装及常用命令;掌握shell脚本编程; 掌握大数据架构Hadoop原理及编程应用;掌握Hadoop三大组件的使用方式、方法以及Hadoop调优; 掌握ZooKeeper协管理器工作机制以及动态感知原理及使用; 掌握Hive数据仓库的使用及调优原理; 掌握HBase数据库的开发、使用以及调优; 掌握消费金融业务处理流程;掌握根据业务制定合理技术框架(技术选型)的能力;大量数据的日志采集方案;数仓的分层搭建以及数仓建模;掌握大量数据的ETL处理方式;掌握工作流调度解决方案;掌握即席查询工具使用及其原理;掌握数据可视化报表工具的使用;掌握数据治理框架的原理以及使用;掌握集群指标监控工具的使用

职业方向:

Hadoop开发工程师、数据仓库工程师、ETL开发工程师、离线开发工程师

第三阶段


Spark技术栈

Spark技术栈

Scala、Kafka、Spark、交通流量实时可视化大屏

培养方向:

握Scala基本语法和进阶的使用,为学习Spark、Flink框架打下基础; 掌握消息队列概念、Kafka原理架构、日志合并、消息检索; 掌握分布式内存计算、RDD、DataSet、DStream概念; 掌握离线计算、流式计算; 掌握可视化大屏内在价值与用途;掌握实时流数据分析业务处理流程;掌握Flume+Kafka+Sparkstreaming+Redis架构整合;掌握Springboot的使用;掌握websocket操作使用;了解Echarts的使用方式

职业方向:

Spark开发工程师、实时开发工程师

第四阶段


Flink流式处理框架

Flink流式处理框架:

Flink、ClickHouse、畅游天涯旅游实时分析项目

培养方向:

掌握Flink的原理;掌握Flink的使用以及与其他技术的整合; 掌握ClickHouse架构、速度快的原因;掌握ClickHouse数据库和表引擎;掌握ClickHouse基本操作以及和spark、flink的整合; 掌握旅游行业业务流程;掌握Flink在实时计算业务中的使用;掌握自定义Flink source和sink来生成和消费Kafka数据;掌握Flink和ClickHouse整合已存储数据;掌握搜索引擎Elasticsearch;掌握Flink和Elasticsearch整合;掌握基于Flink CEP处理复杂事件

职业方向:

Flink开发工程师、实时开发工程师、实时数仓工程师

第五阶段


项目实战

项目实战:

EWR消费信用风险舆情系统、Monoceros物流大数据平台、物流Kubernetes+Docker项目迁移

培养方向:

掌握信贷金融业务处理流程;掌握根据业务制定合理的技术框架(技术选型);掌握当下流行的数据中台概念;掌握前台工作整体机制以及技术应用;掌握后台综合分析展示应用系统;掌握大量数据的综合采集方案;掌握大量数据的ETL处理方式;掌握工作流调度解决方案;掌握集群指标监控工具的使用; 掌握基于亿级订单的物流大数据平台的研发;掌握基于Flink实现仓库货物、仓储车运动轨迹、包裹追踪等多维度业务分析;具备基于HDP平台收集数据资源的能力,实现秒级OLAP分析; 掌握Docker容器化技术以及应用;掌握Kubernetes核心功能以及在项目中的部署应用

职业方向:

数据仓库工程师、ETL开发工程师、离线开发工程师、实时开发工程师、数据中台工程师

第六阶段


就业指导

就业指导:

企业面试前期准备与技巧、专业指导、企业面试复盘

课程内容:

职业规划讲解、简历注意事项详解、就业情况分析简历制作(个人技能、项目经验、自我评价); 简历审核修正、常见面试题的讲解、技术简历的指导与优化、强化实战项目(项目模块的介绍,业务流程的梳理); 真实面试复盘(晚自习时间)(总结学员面试中的问题,进行针对性的辅导以及相关面试题的讲解)

培养方向:

从简历、面试技巧等层面助力学员,培养学员沟通表达能力 让学员清晰了解职业发展规划,明确自身定位,找到适合自身发展的工作; 通过项目强化、面试专项指导、面试复盘等,学员能更好就业


一路暖心服务,不怕您货比三家


一路暖心服务,不怕您货比三家

优就业 1手把手教学,每一位学员的疑问随时解决,不拖延! 2四分理论六分实战的合理教学,干货满满,课程实在,不闲扯! 3真实项目Leader,行业经验、案例精髓,毫无保留倾囊相授! 4真实项目实战,作品真正上线,学习的成果显而易见! 5职业测评、简历修改、面试指导,企业推荐,打造个性化、差异化就业流程! 6封闭教学包住宿,中公购书补助等各项福利,为你的学习做好服务!其他机构 大班授课,老师精力有限,学员问题无法及时得到解决。纯理论填鸭式教学,知识点抽象干瘪,不能学以致用。案例陈旧,无法适应最新需求,小众非典型案例,不具行业代表性。短暂虚拟操作,方法一带而过,学员对知识一知半解。指导学员简历作假,或干脆无就业服务,无法按学员真实情况推荐就业,就业不稳定或薪资达不到预期。日常管理散漫,食宿自理,后续费用接踵而至,经济压力大,影响学习质量。

       大数据培训资料

  各位同学对于大数据编程语言知道多少呢?今天中公优就业带着大家一起来看看常见的3种大数据编程语言,一起来看看他们的功能与特征。

  一、Java

  Java是终极大数据编程语言。根据行业报告,自90年代中期以来,Java一直将自己列为最受欢迎的一两种开源编程语言。有许多因素在使Java流行方面起着至关重要的作用。

  Java功能

  Java使其适合数据科学家的重要特征是:

  Java与Java虚拟机(JVM)相关,因此,Java几乎可以在每个系统上运行。具有可移植性,对Java的投资对开发人员来说是长期的利益。

  Java具有良好的性能,这使其在企业和小型应用程序中都很受欢迎。

  Java是一种静态类型的语言。因此,可以快速的开发,更轻松地进行维护。

  Java向后兼容,这意味着即使Java发布了新版本,您也可以完美地使用它的旧版本。这可以帮助组织或个人摆脱返工。

  Java具有广泛的社区支持,例如Stack Overflow和GitHub。这是它受欢迎的另一个原因。

  现在,如果从大数据角度考虑,JVM是Hadoop MapReduce等大数据分析工具的支柱。不仅Hadoop,而且许多其他大数据分析工具(如Storm,Spark和Kafka)也都是用Java编写的,并在JVM(Clojure和Scala中)上运行。与大数据相关的另一种技术Apache Beam(以前称为Google Cloud Dataflow)仅支持Java。

  因此,Java对于想要深入了解Hadoop代码的任何Hadoop开发人员都是必不可少的。要了解代码功能和故障排除,必须具备核心知识和高级Java知识。因此,Java是大数据开发所必需的。

  从数据科学的角度进行迭代开发,Java 8提供了新的lambda支持,该支持有助于减少冗长性。同样在Java 9版本中,用户将获得REPL支持。新版本中的这两大增强功能使Java与其他流行的数据科学语言R,Python或Scala几乎相似地兼容。

  二、Python

  当下Python重要性正在上升。Python已成为近十年来一些最流行的技术中的主要语言,例如数据科学,机器学习,人工智能(AI),机器人技术,大数据和网络安全。

  Python是一种简单的开源通用语言。因此,很容易为任何人学习Python。这是大数据编程语言成功背后的最重要原因。凭借其丰富的实用程序和库以及易于使用的功能,它对于大数据处理和分析非常有用。

  与R不同,Python是传统的面向对象语言。因此大多数开发人员都觉得使用它相对容易。另一方面,对于初学者来说,初次接触R或Scala可能会成为陡峭的学习曲线。

  Python功能

  下列功能使python非常适合快速数据科学应用程序开发。

  Python是一种解释型语言。因此,编码程序不需要任何编译。

  Python动态定义变量类型。

  Python的独特之处在于其更少的编码,这使得它为用户所接受。

  Python是强类型的,需要手动类型转换。

  Python是可移植的。

  Python在大数据中已变得非常重要。凭借其全面的数据处理库集,Python对于数据科学家而言是一种易于使用的语言。它使大数据专家 可以开发可扩展的应用程序。而且,它可以轻松地与Web应用程序集成。用户 可以在python环境中安装许多开源软件包,这在以后的某个时间可能会有用。

  三、Scala

  Scala采用混合语言方式处理大数据。这是一种高度可扩展的通用编程语言,结合了面向对象和功能编程的功能。

  Scala功能

  Scala的一些著名功能包括:

  Scala是一种通用语言,设计简洁明了。因此,它不太冗长。

  Scala以单独的方式支持OOP和函数式编程。

  Scala可与Java库互操作。

  它是便携式的。可以编写Scala的源代码,然后将其作为已编译的Java字节码在JVM上运行。

  Scala可以编译为JavaScript。因此,您可以使用Scala编写Web应用程序。

  Scala在编译时检查类型。因此,开发人员可以在编译时捕获错误,并且可以避免许多生产问题。

  Scala在数据科学领域是Java和Python的竞争对手,并且由于在大数据Hadoop行业中广泛使用Apache Spark而变得越来越受欢迎。

  Apache Spark用Scala编写。Scala不仅是数据处理领域,而且还被誉为机器学习和流分析的语言。Apache Spark内置了许多支持机器学习算法的API和库。

  总结

  总之,如果您是一个有抱负的大数据专家,那么Linux和Java是Hadoop等最受欢迎的大数据工具的基础。如果您想在数据科学和大数据领域中蒸蒸日上,那么了解以上三种语言是一个优势。但是,逐渐扩大规模对于取得更好的成就是有意义的。


扫描二维码免费领取试听课程

报名预约

登录51乐学网

注册51乐学网

免费短信关闭