滨州大数据培训班
滨州大数据培训班
- 上课时段:详见详情
- 教学点:1个
- 开班时间:滚动开班
- 课程价格:请咨询
- 已关注:748
- 优惠价格:请咨询
- 咨询电话: 400-008-6280
大数据是一种在获取、存储、管理、分析等方面大大超出了传统数据库软件工具能力范围的数据集合。它具有大量的数据规模、快速的数据流转、多样的数据类型和价值密度低四大特征。 未来大数据相关人才缺口巨大。
大量优质岗位等你来
薪资待遇随工作年限呈阶梯式上涨
只有想不想学,没有能不能学
理论、实战双向并行,奠定入行扎实基础
第一阶段 Java语言基础 | Java语言基础: Java语言入门、基本语法、面向对象、常用API、异常、集合、IO流、多线程、网络编程、反射、JDK新特性、MySQL数据库、JDBC 培养方向: 了解Java语言的特征和应用领域;掌握JDK、JRE和JVM的作用;能够成功搭建Java开发环境;完成HelloWorld程序的编写;掌握IDE工具IDEA的使用方式; 掌握Java基本语法中的常量、变量的声明和使用;掌握Java中的运算符、数据类型及其相互转换;掌握分支结构、循环结构、方法的定义和使用;掌握数组的使用,理解数组的内存结构; 掌握面向对象的编程思想;掌握类和对象的定义和使用;理解封装、继承、多态等特性;掌握抽象类、接口的特点和使用方式;充分理解并运用Java面向对象思想来进行程序开发; 掌握Java中的常用类和工具类的使用,能够使用这些常用类和工具类解决多种问题; 掌握Maven项目构建和依赖管理、掌握Maven的继承和聚合; |
第二阶段 Hadoop技术栈 | Hadoop技术栈 Linux、Hadoop、ZooKeeper、Hive、HBase、海王星大数据金融平台 培养方向: 掌握Linux操作系统安装及常用命令;掌握shell脚本编程; 掌握大数据架构Hadoop原理及编程应用;掌握Hadoop三大组件的使用方式、方法以及Hadoop调优; 掌握ZooKeeper协管理器工作机制以及动态感知原理及使用; 掌握Hive数据仓库的使用及调优原理; 掌握HBase数据库的开发、使用以及调优; 掌握消费金融业务处理流程;掌握根据业务制定合理技术框架(技术选型)的能力;大量数据的日志采集方案;数仓的分层搭建以及数仓建模;掌握大量数据的ETL处理方式;掌握工作流调度解决方案;掌握即席查询工具使用及其原理;掌握数据可视化报表工具的使用;掌握数据治理框架的原理以及使用;掌握集群指标监控工具的使用 职业方向: Hadoop开发工程师、数据仓库工程师、ETL开发工程师、离线开发工程师 |
第三阶段 Spark技术栈 | Spark技术栈 Scala、Kafka、Spark、交通流量实时可视化大屏 培养方向: 掌握Scala基本语法和进阶的使用,为学习Spark、Flink框架打下基础; 掌握消息队列概念、Kafka原理架构、日志合并、消息检索; 掌握分布式内存计算、RDD、DataSet、DStream概念; 掌握离线计算、流式计算; 掌握可视化大屏内在价值与用途;掌握实时流数据分析业务处理流程;掌握Flume+Kafka+Sparkstreaming+Redis架构整合;掌握Springboot的使用;掌握websocket操作使用;了解Echarts的使用方式 职业方向: Spark开发工程师、实时开发工程师 |
第四阶段 Flink流式处理框架 | Flink流式处理框架: Flink、ClickHouse、畅游天涯旅游实时分析项目 培养方向: 掌握Flink的原理;掌握Flink的使用以及与其他技术的整合; 掌握ClickHouse架构、速度快的原因;掌握ClickHouse数据库和表引擎;掌握ClickHouse基本操作以及和spark、flink的整合; 掌握旅游行业业务流程;掌握Flink在实时计算业务中的使用;掌握自定义Flink source和sink来生成和消费Kafka数据;掌握Flink和ClickHouse整合已存储数据;掌握搜索引擎Elasticsearch;掌握Flink和Elasticsearch整合;掌握基于Flink CEP处理复杂事件 职业方向: Flink开发工程师、实时开发工程师、实时数仓工程师 |
第五阶段 项目实战 | 项目实战: EWR消费信用风险舆情系统、Monoceros物流大数据平台、物流Kubernetes+Docker项目迁移 培养方向: 掌握信贷金融业务处理流程;掌握根据业务制定合理的技术框架(技术选型);掌握当下流行的数据中台概念;掌握前台工作整体机制以及技术应用;掌握后台综合分析展示应用系统;掌握大量数据的综合采集方案;掌握大量数据的ETL处理方式;掌握工作流调度解决方案;掌握集群指标监控工具的使用; 掌握基于亿级订单的物流大数据平台的研发;掌握基于Flink实现仓库货物、仓储车运动轨迹、包裹追踪等多维度业务分析;具备基于HDP平台收集数据资源的能力,实现秒级OLAP分析; 掌握Docker容器化技术以及应用;掌握Kubernetes核心功能以及在项目中的部署应用 职业方向: 数据仓库工程师、ETL开发工程师、离线开发工程师、实时开发工程师、数据中台工程师 |
第六阶段 就业指导 | 就业指导: 企业面试前期准备与技巧、专业指导、企业面试复盘 课程内容: 职业规划讲解、简历注意事项详解、就业情况分析简历制作(个人技能、项目经验、自我评价); 简历审核修正、常见面试题的讲解、技术简历的指导与优化、强化实战项目(项目模块的介绍,业务流程的梳理); 真实面试复盘(晚自习时间)(总结学员面试中的问题,进行针对性的辅导以及相关面试题的讲解) 培养方向: 从简历、面试技巧等层面助力学员,培养学员沟通表达能力 让学员清晰了解职业发展规划,明确自身定位,找到适合自身发展的工作; 通过项目强化、面试专项指导、面试复盘等,学员能更好就业 |
一路暖心服务,不怕您货比三家
大数据培训资料
从传统的数据库存储到大数据背景下的数据平台系统存储,不同数据库系统之间的数据迁移,是需要解决的一个重要问题。在大数据技术生态下,Sqoop作为数据迁移工具,应用程度还是比较高的。今天我们就来讲讲数据迁移工具Sqoop。
Sqoop可以理解为HadoopHadoop环境下连接关系数据库与Hadoop存储系统的桥梁,支持多种关系型数据源和Hive、HDFS、Hbase的相互导入。
具体来说,Sqoop 支持全表导入,也支持增量数据导入机制,Sqoop工作机制利用MapReduce分布式批处理,加快数据传输速度和容错性,在Hadoop生态集群当中,具有很高的友好性。
Sqoop工作原理
Sqoop利用MapReduce并行特点以批处理的方式加快数据传输,从而提供并发特征和容错。Sqoop主要通过JDBC连接关系型数据库,理论上只要关系型数据库支持JDBC都可以使用Sqoop与HDFS进行数据交互。
Sqoop从关系型数据库导入HDFS:
用户先输入一个Sqoop import 命令,Sqoop会从关系型数据库中获取元数据信息,包括库信息、表有哪些字段及字段类型等,获取信息后会将导入命令转换为基于Map的MapReduce任务。会开启很多Map任务,每个Map任务读取一部分数据,多个Map任务并行完成数据复制到HDFS分布式文件系统上。
使用Sqoop增量导入有append 和 lastmodified两种模式,lastmodified模式区别于apend是可以指定一个时间戳字段,按时间顺序导入,这个模型可以指定增量数据在HDFS的方式,比如最终增量结果为一个文件。
Sqoop导出功能:
用户输入export命令,Sqoop会获取关系型数据表结构信息,建立与Hadoop字段有关系型数据库表字段的映射关系,将命令转换为基于Map的MapReduce作用,生产很多Map任务,并行地从HDFS中读取数据文件,将这个数据复制到数据库中。
Sqoop版本和架构
Sqoop存在两个版本,1.4.x和1.99.x,通常简称为sqoop1和sqoop2
Sqoop1架构师使用Sqoop客户端直接提交的方式,访问方式是CLI控制台方式进行访问,在命令或脚本中指定数据库名及密码。
Sqoop2架构引入了Sqoop Server,集中化管理Connector,提供多种访问方式,如CLI、Web UI、REST API,同时Sqoop2通过CLI方式访问会有一个交互式界面,使输入的密码信息不被看到。
数据迁移工具Sqoop,在完成数据迁移任务上,Sqoop工具的性能还是值得称赞的,尤其从传统数据库到大数据系统的转型,这个工具不可或缺。
扫描二维码免费领取试听课程
登录51乐学网
注册51乐学网