还没有找到合适的课程?赶快告诉课程顾问,让我们顾问马上联系您! 靠谱的培训课程,省时又省力!
大数据开发可以进行大数据工程师认证,数据分析类则可以进行数据分析师认证。这些证书的认证都是在你已经掌握课程的基础上进行。如果零基础可以先进行大数据相关课程学习,自学或者进行大数据培训都行,最好是先去提供认证的机构进行咨询,看看需要掌握哪些技能。
想要入门大数据,先要了解大数据生态圈
课程从大数据的基石Hadoop生态圈入手,逐步将讲解它的核心组件特性
JavaSE | JavaWeb | JavaEE 框架 |
Java 基本语法、面向对象、API、jvm 参数... | 三大框架重构EasyMall 项目、SpringBoot重构EasyMall 项目 | 3Hive、SparkMapReduce、Storm |
大数据互联网架构 | 大数据框架 | 数据挖掘与机 器学习算法 |
Springclound 整合、Redis、RabbitMQ、Lucene、ES | 离线分析、实时分析、内存分析 | Echarts、JSP、JS、EasyUI |
课程大纲
第一章:课前基础工具学习 | 第二章:课前业务知识学习 | 第三章:业务数据分析(Excel) |
主要内容 ・Excel 预习视频・数据库预习视频・Power BI 预习视频 可解决的现实问题 解决0基础学员数据分析工具薄弱的问题 可掌握的核心能力 提前掌握基础数据分析工具的使用,为课程学习打好基础 | 主要内容 ・业务前台人员数据思维训练营 可解决的现实问题 用户画像没有摸清,广告投放连本都收不回,运营流程太混乱,销售转化不理想 可掌握的核心能力 掌握从用户思维做营销增量,借助数据思维从商业顶层俯视业务生命周期,运用数据框架梳理公司整体业务模型 | 主要内容 ・表格结构数据・数据驱动型业务管理・数据埋点・数据治理・指标的设计与应用・可视化分析方法・业务分析方法・业务模型应用・业务分析报告撰写 可解决的现实问题 解决实际工作中不会业务分析、不会撰写业务分析报告的问题 可掌握的核心能力 1、掌握依据电商、互联网、零售行业的数据分析场景介绍,撰写业务分析报告的全流程 2、掌握从客户、产品、运营、行为效果等维度出发,搭建业务指标体系,综合使用可视化分析方法、业务分析方法。 |
第四章:统计基础 | 第五章:多维数据分析 | 第六章:推断性统计 |
主要内容 ・数据分析的基本概念・描述性统计与数据预处理・统计分布 可解决的现实问题 缺失值处理,冗余处理,数据标准化 可掌握的核心能力 1、掌握通过统计基础可初步掌握数据分析的基本概念 2、掌握描述性统计的数据集成 3、掌握数据标准化和数据预处理 | 主要内容 ・表结构数据的特征与获取・数据加工与使用・多表透视分析・透视分析方法・多维数据模型 综合实战案例:・电商综合运营分析仪表板・产品进销存追踪监控看板・电商运营分析驾驶舱・服装行业销售情况分析・地产企业盈利分析 可解决的现实问题 解决使用商业智能报表分析业务、监控业务的问题 可掌握的核心能力 1、掌握使用 Power BI 搭建可视化分析报表的全流程; 2、掌握表结构数据的获取、加工、数仓应用、多表透视分析; 3、掌握在客户分析、产品分析、运营分析、市场分析、销售分析等场景下制作可视化分析报表 | 主要内容 ・参数估计・假设检验・AB Test・带检验的AB Test分析运营方案 可解决的现实问题 解决实际情况中根据样本对总体特征的推断性统计问题 可掌握的核心能力 1、掌握假设性检验的方法 2、掌握推断性统计 3、掌握AB Test的分析运营方案 |
第七章:MySQL 数据库 | 第八章:数据管理与治理 | 第九章:数据架构 |
主要内容 ・数据库基本概念・DDL・DML・单表查询・多表查询・常用函数・SQL大厂面试题 实战案例:・电商多表查询・零售业多表查询 可解决的现实问题 解决从数据库提取目标数据的问题,实现单表和多表查询 可掌握的核心能力 1、掌握 MySQL 数据库基本概念,常用函数、DDL 数据定义语言及 DML 数据操作语言 2、掌握单表查询、多表查询查询方法,查询结果排序、限制查询等方法 3、掌握大厂 MySQL 面试题 | 主要内容 ・企业决策的四个层次・企业数据分析能力的演进・企业运营和操作数据应用・数据管理基础知识・DMBOK 知识体系・企业数据能力建设・数据治理实操框架 可解决的现实问题 提高企业的运营和数据能力建设 可掌握的核心能力 1、掌握企业决策的四个层次及企业数据能力建设 2、掌握企业数据分析、企业运营和操作数据应用 3、掌握数据管理基础知识和 DMBOK 知识体系 4、掌握数据治理实操框架 | 主要内容 ・数据架构的基本概念・数据模型介绍・数据建模基础・数据建模方法・数据建模规范化・数据建模案例 可解决的现实问题 学习数据架构的基本概念,模型介绍以及建模案例 可掌握的核心能力 1、掌握数据架构及数据建模基础知识 2、掌握数据建模方法及数据建模规范化 3、学习数据建模案例 |
第十章:Hive SQL | 第十一章:综合项目实战 | 第十二章:Python 编程基础 |
主要内容 ・Linux 系统常用命令・分布式存储与计算(Hadoop)・Hive 架构原理及数据类型・HiveQL 与应用 可解决的现实问题 系统安装及部署,架构原理及应用 可掌握的核心能力 掌握 Linux 的常用命令和分布式存储与计算,Hive 架构原理及数据类型 | 主要内容 ・跨国企业完整数据分析实战案例・学生探索性实操制作分析报告・项目现场专家评审与 1 V 1 指导 可解决的现实问题 综合运用业务分析工具,解决数据运营和数据营销问题 可掌握的核心能力 老师指导还原两大数据分析项目全流程,综合使用 SQL、Excel、Power BI 等工具以及业务数据分析方法,得到高价值业务数据分析报告。 | 主要内容 ・Python 与 Anaconda 简介・Python 标准数据类型・Python 基本语法・控制流・自定义函数 可解决的现实问题 解决海量数据处理的的编程语言基础 可掌握的核心能力 掌握 Python 基础编程的能力,为处理海量数据奠定基础 |
大数据培训机构推荐十家名单:(排名不分先后) 1、达内教育 2、汇智动力 3、火星时代 4、完美动力 5、博为峰 6、天琥教育 7、CGWANG教育 8、上海交大南洋学院 9、上元教育 10、火星人教育 大数据的培训机构并没有什么排名名单,全部都是网上随便编排的排名,并没有什么作用。 |
计算机要对输入的单词进行计数
如果采用集中式计算方式,我们要先算出一个单词如Deer出现了多少次,再算另一个单词出现了多少次,直到所有单词统计完毕,将浪费大量的时间和资源。 如果采用分布式计算方式,计算将变得高效。我们将数据随机分配给三个节点,由节点去分别统计各自处理的数据中单词出现的次数,再将相同的单词进行聚合,输出最后的结果。
批处理计算
最适合于完成大数据批处理的计算模式是MapReduce, 首先,MapReduce对具有简单数据关系、易于划分的大规模数据采用“分而治之”的并行处理思想;然后将大量重复的数据记录处理过程总结成Map和Reduce两个抽象的操作;最后MapReduce提供了一个统一的并行计算框架,把并行计算所涉及到的诸多系统层细节都交给计算框架去完成,以此大大简化了程序员进行并行化程序设计的负担。
大数据存储与管理
传统的数据存储和管理以结构化数据为主,因此关系数据库系统(RDBMS)可以一统天下满足各类应用需求。大数据半结构化和非结构化数据为主,结构化数据为辅,而且各种大数据应用通常是对不同类型的数据内容检索、交叉比对、深度挖掘与综合分析。面对这类应用需求,传统数据库无论在技术上还是功能上都难以为继。因此,近几年出现了oldSQL、NoSQL 与NewSQL 并存的局面。总体上,按数据类型的不同,大数据的存储和管理采用不同的技术路线。
基础中的基础Java开发
对于零基础的同学首要掌握的就是大数据的底层开发语言,目前所知很多编程语言都可以实现大数据技术,但是目前国内大部分企业的应用程序都是使用Java编程语言开发的。因此为了更好的实现就业,我们一般建议大家掌握Java编程语言。在Java基础中,着重学习Java基本语法以及面向对象的编程思维。
学大数据要学Javaweb技术
掌握Java基础语法后,还需要进一步学习JavaWeb编程方面的知识,尤其Java高级基础中的网络编程、多线程、注解等技术在大数据开发中都是非常常用的技术。此外在JavaWeb技术学习中还要重点掌握前端开发知识(HTML、CSS、JavaScript、BootSrtap、jQuery、ajax)、常用数据库知识(MySQL、JDBC、Maven、Git)、网络编程(Tomcat、servlet、rquest、Filter)等等。
抽样的必要性有哪些
即使在数据计算资源充足、数据采集端可以采集更多的数据并且可以通过多种方式满足时效性要求的前提下,抽样工作在很多时候也是必要的。大数据分析师平时会接触很多数据预处理工作,那么是不是每次做数据分析都要做一遍呢?答案当然不是,数据预处理是为后续的分析和建模服务的,如果后续的分析和建模不依赖于特定的数据问题,那么特定的预处理工作可以不做。
扫描二维码免费领取试听课程
登录51乐学网
注册51乐学网