绍兴计算机培训机构
服务热线:400-008-6280
当前位置>绍兴计算机培训机构>学校动态>绍兴大数据学习的培训班哪个机构口碑好

绍兴大数据学习的培训班哪个机构口碑好

绍兴中公优就业 (点击获取校区地址) 74 2023-10-26 15:17:01

大数据培训班

  大数据开发可以进行大数据工程师认证,数据分析类则可以进行数据分析师认证。这些证书的认证都是在你已经掌握课程的基础上进行。如果零基础可以先进行大数据相关课程学习,自学或者进行大数据培训都行,最好是先去提供认证的机构进行咨询,看看需要掌握哪些技能。


想要入门大数据,先要了解大数据生态圈

课程从大数据的基石Hadoop生态圈入手,逐步将讲解它的核心组件特性


JavaSE

JavaSE

JavaWeb

JavaWeb

JavaEE 框架

JavaEE 框架

Java 基本语法、面向对象、API、jvm 参数...三大框架重构EasyMall 项目、SpringBoot重构EasyMall 项目3Hive、SparkMapReduce、Storm

大数据互联网架构

大数据互联网架构

大数据框架

大数据框架

数据挖掘与机 器学习算法

数据挖掘与机 器学习算法

Springclound 整合、Redis、RabbitMQ、Lucene、ES离线分析、实时分析、内存分析Echarts、JSP、JS、EasyUI


课程大纲


第一章:课前基础工具学习第二章:课前业务知识学习第三章:业务数据分析(Excel)

1695800971405059.png主要内容

Excel 预习视频数据库预习视频Power BI 预习视频

1695800984102809.png可解决的现实问题

解决0基础学员数据分析工具薄弱的问题

1695801001606548.png可掌握的核心能力

提前掌握基础数据分析工具的使用,为课程学习打好基础

1695800971405059.png主要内容

业务前台人员数据思维训练营

1695800984102809.png可解决的现实问题

用户画像没有摸清,广告投放连本都收不回,运营流程太混乱,销售转化不理想

1695801001606548.png可掌握的核心能力

掌握从用户思维做营销增量,借助数据思维从商业顶层俯视业务生命周期,运用数据框架梳理公司整体业务模型

1695800971405059.png主要内容

表格结构数据数据驱动型业务管理数据埋点数据治理指标的设计与应用可视化分析方法业务分析方法业务模型应用业务分析报告撰写

1695800984102809.png可解决的现实问题

解决实际工作中不会业务分析、不会撰写业务分析报告的问题

1695801001606548.png可掌握的核心能力

1、掌握依据电商、互联网、零售行业的数据分析场景介绍,撰写业务分析报告的全流程

2、掌握从客户、产品、运营、行为效果等维度出发,搭建业务指标体系,综合使用可视化分析方法、业务分析方法。

第四章:统计基础第五章:多维数据分析第六章:推断性统计

1695800971405059.png主要内容

数据分析的基本概念描述性统计与数据预处理统计分布

1695800984102809.png可解决的现实问题

缺失值处理,冗余处理,数据标准化

1695801001606548.png可掌握的核心能力

1、掌握通过统计基础可初步掌握数据分析的基本概念

2、掌握描述性统计的数据集成

3、掌握数据标准化和数据预处理

1695800971405059.png主要内容

表结构数据的特征与获取数据加工与使用多表透视分析透视分析方法多维数据模型

综合实战案例:电商综合运营分析仪表板产品进销存追踪监控看板电商运营分析驾驶舱服装行业销售情况分析地产企业盈利分析

1695800984102809.png可解决的现实问题

解决使用商业智能报表分析业务、监控业务的问题

1695801001606548.png可掌握的核心能力

1、掌握使用 Power BI 搭建可视化分析报表的全流程;

2、掌握表结构数据的获取、加工、数仓应用、多表透视分析;

3、掌握在客户分析、产品分析、运营分析、市场分析、销售分析等场景下制作可视化分析报表

1695800971405059.png主要内容

参数估计假设检验AB Test带检验的AB Test分析运营方案

1695800984102809.png可解决的现实问题

解决实际情况中根据样本对总体特征的推断性统计问题

1695801001606548.png可掌握的核心能力

1、掌握假设性检验的方法

2、掌握推断性统计

3、掌握AB Test的分析运营方案

第七章:MySQL 数据库第八章:数据管理与治理第九章:数据架构

1695800971405059.png主要内容

数据库基本概念DDLDML单表查询多表查询常用函数SQL大厂面试题

实战案例:电商多表查询零售业多表查询

1695800984102809.png可解决的现实问题

解决从数据库提取目标数据的问题,实现单表和多表查询

1695801001606548.png可掌握的核心能力

1、掌握 MySQL 数据库基本概念,常用函数、DDL 数据定义语言及 DML 数据操作语言

2、掌握单表查询、多表查询查询方法,查询结果排序、限制查询等方法

3、掌握大厂 MySQL 面试题

1695800971405059.png主要内容

企业决策的四个层次企业数据分析能力的演进企业运营和操作数据应用数据管理基础知识DMBOK 知识体系企业数据能力建设数据治理实操框架

1695800984102809.png可解决的现实问题

提高企业的运营和数据能力建设

1695801001606548.png可掌握的核心能力

1、掌握企业决策的四个层次及企业数据能力建设

2、掌握企业数据分析、企业运营和操作数据应用

3、掌握数据管理基础知识和 DMBOK 知识体系

4、掌握数据治理实操框架 

1695800971405059.png主要内容

数据架构的基本概念数据模型介绍数据建模基础数据建模方法数据建模规范化数据建模案例

1695800984102809.png可解决的现实问题

学习数据架构的基本概念,模型介绍以及建模案例

1695801001606548.png可掌握的核心能力

1、掌握数据架构及数据建模基础知识

2、掌握数据建模方法及数据建模规范化

3、学习数据建模案例

第十章:Hive SQL第十一章:综合项目实战第十二章:Python 编程基础
1695800971405059.png主要内容

Linux 系统常用命令分布式存储与计算(Hadoop)Hive 架构原理及数据类型HiveQL 与应用

1695800984102809.png可解决的现实问题

系统安装及部署,架构原理及应用

1695801001606548.png可掌握的核心能力

掌握 Linux 的常用命令和分布式存储与计算,Hive 架构原理及数据类型

1695800971405059.png主要内容

跨国企业完整数据分析实战案例学生探索性实操制作分析报告项目现场专家评审与 1 V 1 指导

1695800984102809.png可解决的现实问题

综合运用业务分析工具,解决数据运营和数据营销问题

1695801001606548.png可掌握的核心能力

老师指导还原两大数据分析项目全流程,综合使用 SQL、Excel、Power BI 等工具以及业务数据分析方法,得到高价值业务数据分析报告。

1695800971405059.png主要内容

Python 与 Anaconda 简介Python 标准数据类型Python 基本语法控制流自定义函数

1695800984102809.png可解决的现实问题

解决海量数据处理的的编程语言基础

1695801001606548.png可掌握的核心能力

掌握 Python 基础编程的能力,为处理海量数据奠定基础


大数据培训机构推荐十家名单:(排名不分先后)

1、达内教育

2、汇智动力

3、火星时代

4、完美动力

5、博为峰

6、天琥教育

7、CGWANG教育

8、上海交大南洋学院

9、上元教育

10、火星人教育

大数据的培训机构并没有什么排名名单,全部都是网上随便编排的排名,并没有什么作用。

  数学知识是分析师的基础

  对于初级数据分析师,了解一些描述统计相关的基础内容,有一定的公式计算能力即可,了解常用统计模型算法则是加分。对于高级数据分析师,统计模型相关知识是必备能力,线性代数(主要是矩阵计算相关知识)最好也有一定的了解。而对于数据挖掘工程师,除了统计学以外,各类算法也需要熟练使用,对数学的要求是最高的。

  大数据分析的理论核心是什么

  大数据分析的理论核心就是数据挖掘算法,各种数据挖掘的算法基于不同的数据类型和格式才能更加科学的呈现出数据本身具备的特点,也正是因为这些被全世界统计学家所公认的各种统计方法(可以称之为真理)才能深入数据内部,挖掘出公认的价值。另外一个方面也是因为有这些数据挖掘的算法才能更快速的处理大数据,如果一个算法得花上好几年才能得出结论,那大数据的价值也就无从说起了。

  大数据预处理包括哪些

  大数据预处理,指的是在进行数据分析之前,先对采集到的原始数据所进行的诸如“清洗、填补、平滑、合并、规格化、一致性检验”等一系列操作,旨在提高数据质量,为后期分析工作奠定基础。数据预处理主要包括四个部分:数据清理、数据集成、数据转换、数据规约。

  大数据分析师如何展示数据

  数据展现是数据可视化的一部分,数据分析师在展现数据分析的基本要求:1、选择使用的数据分析工具,比如ppt、excel等等都是不错的工具;2、数据展现的形式,图文并茂是基本原则,如果加上一些有趣的讲述则是加分项;3、数据展现的原则,领导层主要是看趋势要结论,执行层主要是读数据,看过程;4、数据展现场景,ppt比较使用大型会议,word可以用来汇报说明,excel适用于数据较多时使用。

  大数据生命周期

  底层是基础设施,涵盖计算资源、内存与存储和网络互联,具体表现为计算节点、集群、机柜和数据中心。在此之上是数据存储和管理,包括文件系统、数据库和类似YARN的资源管理系统。然后是计算处理层,如hadoop、MapReduce和Spark,以及在此之上的各种不同计算范式,如批处理、流处理和图计算等,包括衍生出编程模型的计算模型,如BSP、GAS 等。

  类加载器有哪些

  主要有一下四种类加载器:1)启动类加载器(BootstrapClassLoader)用来加载java核心类库,无法被java程序直接引用。2)扩展类加载器(extensionsclassloader):它用来加载Java的扩展库。Java虚拟机的实现会提供一个扩展库目录。该类加载器在此目录里面查找并加载Java类。3)系统类加载器(systemclassloader)也叫应用类加载器:它根据Java应用的类路径(CLASSPATH)来加载Java类。一般来说,Java应用的类都是由它来完成加载的。可以通过ClassLoader.getSystemClassLoader()来获取它。4)用户自定义类加载器,通过继承java.lang.ClassLoader类的方式实现。

扫描二维码免费领取试听课程

报名预约

登录51乐学网

注册51乐学网

免费短信关闭