还没有找到合适的课程?赶快告诉课程顾问,让我们顾问马上联系您! 靠谱的培训课程,省时又省力!
大数据是一种在获取、存储、管理、分析等方面大大超出了传统数据库软件工具能力范围的数据集合。它具有大量的数据规模、快速的数据流转、多样的数据类型和价值密度低四大特征。 未来大数据相关人才缺口巨大。
为什么学习大数据+数据智能?
大数据浪潮席卷全球,应用领域宽广,产业规模空前
就业口径宽广,价值堪比黄金石油,“钱途”无量
❶ 岗位起薪高 | ❷ 人才缺口大 | ❸ 市场规模大 | ❹ 应用范围广 |
大数据人才荒 待遇高规格 岗位月均薪25700元 | 未来国内基础性数据分析人才 缺口将达1400万 | 国内大数据市场产值 将突破30000亿元 | “金融、电商、医疗、新零售、物联网... 行业几乎都会应用数据分析 |
理论、实战双向并行,奠定入行扎实基础
第一阶段 Java语言基础 | Java语言基础: Java语言入门、基本语法、面向对象、常用API、异常、集合、IO流、多线程、网络编程、反射、JDK新特性、MySQL数据库、JDBC 培养方向: 了解Java语言的特征和应用领域;掌握JDK、JRE和JVM的作用;能够成功搭建Java开发环境;完成HelloWorld程序的编写;掌握IDE工具IDEA的使用方式; 掌握Java基本语法中的常量、变量的声明和使用;掌握Java中的运算符、数据类型及其相互转换;掌握分支结构、循环结构、方法的定义和使用;掌握数组的使用,理解数组的内存结构; 掌握面向对象的编程思想;掌握类和对象的定义和使用;理解封装、继承、多态等特性;掌握抽象类、接口的特点和使用方式;充分理解并运用Java面向对象思想来进行程序开发; 掌握Java中的常用类和工具类的使用,能够使用这些常用类和工具类解决多种问题; 掌握Maven项目构建和依赖管理、掌握Maven的继承和聚合; |
第二阶段 Hadoop技术栈 | Hadoop技术栈 Linux、Hadoop、ZooKeeper、Hive、HBase、海王星大数据金融平台 培养方向: 掌握Linux操作系统安装及常用命令;掌握shell脚本编程; 掌握大数据架构Hadoop原理及编程应用;掌握Hadoop三大组件的使用方式、方法以及Hadoop调优; 掌握ZooKeeper协管理器工作机制以及动态感知原理及使用; 掌握Hive数据仓库的使用及调优原理; 掌握HBase数据库的开发、使用以及调优; 掌握消费金融业务处理流程;掌握根据业务制定合理技术框架(技术选型)的能力;大量数据的日志采集方案;数仓的分层搭建以及数仓建模;掌握大量数据的ETL处理方式;掌握工作流调度解决方案;掌握即席查询工具使用及其原理;掌握数据可视化报表工具的使用;掌握数据治理框架的原理以及使用;掌握集群指标监控工具的使用 职业方向: Hadoop开发工程师、数据仓库工程师、ETL开发工程师、离线开发工程师 |
第三阶段 Spark技术栈 | Spark技术栈 Scala、Kafka、Spark、交通流量实时可视化大屏 培养方向: 掌握Scala基本语法和进阶的使用,为学习Spark、Flink框架打下基础; 掌握消息队列概念、Kafka原理架构、日志合并、消息检索; 掌握分布式内存计算、RDD、DataSet、DStream概念; 掌握离线计算、流式计算; 掌握可视化大屏内在价值与用途;掌握实时流数据分析业务处理流程;掌握Flume+Kafka+Sparkstreaming+Redis架构整合;掌握Springboot的使用;掌握websocket操作使用;了解Echarts的使用方式 职业方向: Spark开发工程师、实时开发工程师 |
第四阶段 Flink流式处理框架 | Flink流式处理框架: Flink、ClickHouse、畅游天涯旅游实时分析项目 培养方向: 掌握Flink的原理;掌握Flink的使用以及与其他技术的整合; 掌握ClickHouse架构、速度快的原因;掌握ClickHouse数据库和表引擎;掌握ClickHouse基本操作以及和spark、flink的整合; 掌握旅游行业业务流程;掌握Flink在实时计算业务中的使用;掌握自定义Flink source和sink来生成和消费Kafka数据;掌握Flink和ClickHouse整合已存储数据;掌握搜索引擎Elasticsearch;掌握Flink和Elasticsearch整合;掌握基于Flink CEP处理复杂事件 职业方向: Flink开发工程师、实时开发工程师、实时数仓工程师 |
第五阶段 项目实战 | 项目实战: EWR消费信用风险舆情系统、Monoceros物流大数据平台、物流Kubernetes+Docker项目迁移 培养方向: 掌握信贷金融业务处理流程;掌握根据业务制定合理的技术框架(技术选型);掌握当下流行的数据中台概念;掌握前台工作整体机制以及技术应用;掌握后台综合分析展示应用系统;掌握大量数据的综合采集方案;掌握大量数据的ETL处理方式;掌握工作流调度解决方案;掌握集群指标监控工具的使用; 掌握基于亿级订单的物流大数据平台的研发;掌握基于Flink实现仓库货物、仓储车运动轨迹、包裹追踪等多维度业务分析;具备基于HDP平台收集数据资源的能力,实现秒级OLAP分析; 掌握Docker容器化技术以及应用;掌握Kubernetes核心功能以及在项目中的部署应用 职业方向: 数据仓库工程师、ETL开发工程师、离线开发工程师、实时开发工程师、数据中台工程师 |
第六阶段 就业指导 | 就业指导: 企业面试前期准备与技巧、专业指导、企业面试复盘 课程内容: 职业规划讲解、简历注意事项详解、就业情况分析简历制作(个人技能、项目经验、自我评价); 简历审核修正、常见面试题的讲解、技术简历的指导与优化、强化实战项目(项目模块的介绍,业务流程的梳理); 真实面试复盘(晚自习时间)(总结学员面试中的问题,进行针对性的辅导以及相关面试题的讲解) 培养方向: 从简历、面试技巧等层面助力学员,培养学员沟通表达能力 让学员清晰了解职业发展规划,明确自身定位,找到适合自身发展的工作; 通过项目强化、面试专项指导、面试复盘等,学员能更好就业 |
大数据培训机构推荐十家名单:(排名不分先后) 1、达内教育 2、汇智动力 3、火星时代 4、完美动力 5、博为峰 6、天琥教育 7、CGWANG教育 8、上海交大南洋学院 9、上元教育 10、火星人教育 大数据的培训机构并没有什么排名名单,全部都是网上随便编排的排名,并没有什么作用。 |
什么是DIKW模型
D=Data,表示数据,I=Information,表示信息,K=Knowledge,表示知识,W=Wisdom,表示智慧。DIKW模型将数据、信息、知识、智慧纳入到一种金字塔形的层次体系,每一层比下一层都赋予的一些特质。原始观察及量度获得了数据、分析数据间的关系获得了信息。在行动上应用信息产生了知识。智慧关心未来,它含有暗示及滞后影响的意味。
数据挖掘算法
数据挖掘算法是大数据分析的理论核心,其本质是一组根据算法事先定义好的数学公式,将收集到的数据作为参数变量带入其中,从而能够从大量复杂的数据中提取到有价值的信息。著名的“啤酒和尿布”的故事就是数据挖掘算法的经典案例。沃尔玛通过对啤酒和尿布购买数据的分析,挖掘出以前未知的两者间的联系,并利用这种联系,提升了商品的销量。亚马逊的推荐引擎和谷歌的广告系统都大量使用了数据挖掘算法。
零基础学大数据贵在坚持
“师父领进门修行在个人”。零基础小伙伴在学习大数据开发技术知识的过程中,要坚持不懈的去学习开发技术知识,不要认为在大数据培训机构学习就高枕无忧了,其实想要学好大数据开发技术知识,培训班老师指导学习并不是重要因素,重要因素是小伙伴所选择的学习方法和坚持不懈的学习心态。
什么是数据资产化
数据资产化:将数据变成可以交易的资产对企业的影响:形成企业共通的数据语言数据在企业内部充分应用最大的障碍是存在语言壁垒。数据资产化意味***内部形成共同的“数据语言”,各部门为了统一的分析目的,形成各自对应的统计标准,在运营过程中实时对数据进行收集汇总分析。
大数据存储与管理
传统的数据存储和管理以结构化数据为主,因此关系数据库系统(RDBMS)可以一统天下满足各类应用需求。大数据半结构化和非结构化数据为主,结构化数据为辅,而且各种大数据应用通常是对不同类型的数据内容检索、交叉比对、深度挖掘与综合分析。面对这类应用需求,传统数据库无论在技术上还是功能上都难以为继。因此,近几年出现了oldSQL、NoSQL 与NewSQL 并存的局面。总体上,按数据类型的不同,大数据的存储和管理采用不同的技术路线。
预测性分析能力
大数据分析最终要的应用领域之一就是预测性分析,从大数据中挖掘出特点,通过科学的建立模型,之后便可以通过模型带入新的数据,从而预测未来的数据。
扫描二维码免费领取试听课程
登录51乐学网
注册51乐学网