还没有找到合适的课程?赶快告诉课程顾问,让我们顾问马上联系您! 靠谱的培训课程,省时又省力!
大数据开发可以进行大数据工程师认证,数据分析类则可以进行数据分析师认证。这些证书的认证都是在你已经掌握课程的基础上进行。如果零基础可以先进行大数据相关课程学习,自学或者进行大数据培训都行,最好是先去提供认证的机构进行咨询,看看需要掌握哪些技能。
想要入门大数据,先要了解大数据生态圈
课程从大数据的基石Hadoop生态圈入手,逐步将讲解它的核心组件特性
JavaSE | JavaWeb | JavaEE 框架 |
Java 基本语法、面向对象、API、jvm 参数... | 三大框架重构EasyMall 项目、SpringBoot重构EasyMall 项目 | 3Hive、SparkMapReduce、Storm |
大数据互联网架构 | 大数据框架 | 数据挖掘与机 器学习算法 |
Springclound 整合、Redis、RabbitMQ、Lucene、ES | 离线分析、实时分析、内存分析 | Echarts、JSP、JS、EasyUI |
课程大纲
第一章:课前基础工具学习 | 第二章:课前业务知识学习 | 第三章:业务数据分析(Excel) |
主要内容 ・Excel 预习视频・数据库预习视频・Power BI 预习视频 可解决的现实问题 解决0基础学员数据分析工具薄弱的问题 可掌握的核心能力 提前掌握基础数据分析工具的使用,为课程学习打好基础 | 主要内容 ・业务前台人员数据思维训练营 可解决的现实问题 用户画像没有摸清,广告投放连本都收不回,运营流程太混乱,销售转化不理想 可掌握的核心能力 掌握从用户思维做营销增量,借助数据思维从商业顶层俯视业务生命周期,运用数据框架梳理公司整体业务模型 | 主要内容 ・表格结构数据・数据驱动型业务管理・数据埋点・数据治理・指标的设计与应用・可视化分析方法・业务分析方法・业务模型应用・业务分析报告撰写 可解决的现实问题 解决实际工作中不会业务分析、不会撰写业务分析报告的问题 可掌握的核心能力 1、掌握依据电商、互联网、零售行业的数据分析场景介绍,撰写业务分析报告的全流程 2、掌握从客户、产品、运营、行为效果等维度出发,搭建业务指标体系,综合使用可视化分析方法、业务分析方法。 |
第四章:统计基础 | 第五章:多维数据分析 | 第六章:推断性统计 |
主要内容 ・数据分析的基本概念・描述性统计与数据预处理・统计分布 可解决的现实问题 缺失值处理,冗余处理,数据标准化 可掌握的核心能力 1、掌握通过统计基础可初步掌握数据分析的基本概念 2、掌握描述性统计的数据集成 3、掌握数据标准化和数据预处理 | 主要内容 ・表结构数据的特征与获取・数据加工与使用・多表透视分析・透视分析方法・多维数据模型 综合实战案例:・电商综合运营分析仪表板・产品进销存追踪监控看板・电商运营分析驾驶舱・服装行业销售情况分析・地产企业盈利分析 可解决的现实问题 解决使用商业智能报表分析业务、监控业务的问题 可掌握的核心能力 1、掌握使用 Power BI 搭建可视化分析报表的全流程; 2、掌握表结构数据的获取、加工、数仓应用、多表透视分析; 3、掌握在客户分析、产品分析、运营分析、市场分析、销售分析等场景下制作可视化分析报表 | 主要内容 ・参数估计・假设检验・AB Test・带检验的AB Test分析运营方案 可解决的现实问题 解决实际情况中根据样本对总体特征的推断性统计问题 可掌握的核心能力 1、掌握假设性检验的方法 2、掌握推断性统计 3、掌握AB Test的分析运营方案 |
第七章:MySQL 数据库 | 第八章:数据管理与治理 | 第九章:数据架构 |
主要内容 ・数据库基本概念・DDL・DML・单表查询・多表查询・常用函数・SQL大厂面试题 实战案例:・电商多表查询・零售业多表查询 可解决的现实问题 解决从数据库提取目标数据的问题,实现单表和多表查询 可掌握的核心能力 1、掌握 MySQL 数据库基本概念,常用函数、DDL 数据定义语言及 DML 数据操作语言 2、掌握单表查询、多表查询查询方法,查询结果排序、限制查询等方法 3、掌握大厂 MySQL 面试题 | 主要内容 ・企业决策的四个层次・企业数据分析能力的演进・企业运营和操作数据应用・数据管理基础知识・DMBOK 知识体系・企业数据能力建设・数据治理实操框架 可解决的现实问题 提高企业的运营和数据能力建设 可掌握的核心能力 1、掌握企业决策的四个层次及企业数据能力建设 2、掌握企业数据分析、企业运营和操作数据应用 3、掌握数据管理基础知识和 DMBOK 知识体系 4、掌握数据治理实操框架 | 主要内容 ・数据架构的基本概念・数据模型介绍・数据建模基础・数据建模方法・数据建模规范化・数据建模案例 可解决的现实问题 学习数据架构的基本概念,模型介绍以及建模案例 可掌握的核心能力 1、掌握数据架构及数据建模基础知识 2、掌握数据建模方法及数据建模规范化 3、学习数据建模案例 |
第十章:Hive SQL | 第十一章:综合项目实战 | 第十二章:Python 编程基础 |
主要内容 ・Linux 系统常用命令・分布式存储与计算(Hadoop)・Hive 架构原理及数据类型・HiveQL 与应用 可解决的现实问题 系统安装及部署,架构原理及应用 可掌握的核心能力 掌握 Linux 的常用命令和分布式存储与计算,Hive 架构原理及数据类型 | 主要内容 ・跨国企业完整数据分析实战案例・学生探索性实操制作分析报告・项目现场专家评审与 1 V 1 指导 可解决的现实问题 综合运用业务分析工具,解决数据运营和数据营销问题 可掌握的核心能力 老师指导还原两大数据分析项目全流程,综合使用 SQL、Excel、Power BI 等工具以及业务数据分析方法,得到高价值业务数据分析报告。 | 主要内容 ・Python 与 Anaconda 简介・Python 标准数据类型・Python 基本语法・控制流・自定义函数 可解决的现实问题 解决海量数据处理的的编程语言基础 可掌握的核心能力 掌握 Python 基础编程的能力,为处理海量数据奠定基础 |
大数据培训机构推荐十家名单:(排名不分先后) 1、达内教育 2、汇智动力 3、火星时代 4、完美动力 5、博为峰 6、天琥教育 7、CGWANG教育 8、上海交大南洋学院 9、上元教育 10、火星人教育 大数据的培训机构并没有什么排名名单,全部都是网上随便编排的排名,并没有什么作用。 |
未来大数据趋势
大数据的意义不在于掌握大量的数据信息,而在于专业处理这些数据,通过加工实现附加价值。今后,企业基于大数据计算分析存储、数据挖掘、数据分析等数据产业的发展,需要更多的数据人才,先学,先学。当前,社会各界已普遍认识到大数据管理的重要性,大数据管理建设已成为大数据发展的重点,但仍处于发展的初期阶段,推进大数据管理体系建设还有很长的路要走。
MapReduce
MapReduce是面向大数据并行处理的计算模型、框架和平台,是一个基于集群的高性能并行计算平台(Cluster Infrastructure)。它允许用市场上普通的商用服务器构成一个包含数十、数百至数千个节点的分布和并行计算集群。是利用SQL语句查询存储在HDFS文件系统上的计算查询引擎,可以处理超大数据量,缺点是执行map和reduce过程性能会比较慢。
消息队列
消息队列中间件是分布式系统中重要的组件,主要解决应用耦合、异步消息、流量削峰等问题。目前在生产环境,使用较多的消息队列有Kafka、MetaMQ、RocketMQ、Turbo Mq等。
Apriori算法有两个致命的性能瓶颈
1、多次扫描事务数据库,需要很大的I/O负载。2、对每次k循环,侯选集Ck中的每个元素都必须通过扫描数据库一次来验证其是否加入Lk。假如有一个频繁大项目集包含10个项的话,那么就至少需要扫描事务数据库10遍。3、可能产生庞大的侯选集。4、由Lk-1产生k-侯选集Ck是指数增长的,例如104个1-频繁项目集就有可能产生接近107个元素的2-侯选集。如此大的侯选集对时间和主存空间都是一种挑战。a基于数据分割的方法:基本原理是“在一个划分中的支持度小于最小支持度的k-项集不可能是全局频繁的”。
了解大数据理论
要学习大数据你至少应该知道什么是大数据,大数据一般运用在什么领域。对大数据有一个大概的了解,你才能清楚自己对大数据究竟是否有兴趣,如果对大数据一无所知就开始学习,有可能学着学着发现自己其实不喜欢,这样浪费了时间精力,可能还浪费了金钱。所以如果想要学习大数据,需要先对大数据有一个大概的了解。
Flume工作机制是什么
核心概念是agent,里面包括source、chanel和sink三个组件。source运行在日志收集节点进行日志采集,之后临时存储在chanel中,sink负责将chanel中的数据发送到目的地。只有成功发送之后chanel中的数据才会被删除。首先书写flume配置文件,定义agent、source、chanel和sink然后将其组装,执行flumeng命令。
扫描二维码免费领取试听课程
登录51乐学网
注册51乐学网