连云港计算机培训机构
服务热线:400-008-6280
当前位置>连云港计算机培训机构>学校动态>连云港大数据值得推荐的培训班

连云港大数据值得推荐的培训班

连云港中公优就业 (点击获取校区地址) 122 2023-06-11 08:44:01

大数据培训班

  大数据是一种在获取、存储、管理、分析等方面大大超出了传统数据库软件工具能力范围的数据集合。它具有大量的数据规模、快速的数据流转、多样的数据类型和价值密度低四大特征。 未来大数据相关人才缺口巨大。


为什么学习大数据+数据智能?

大数据浪潮席卷全球,应用领域宽广,产业规模空前

就业口径宽广,价值堪比黄金石油,“钱途”无量


❶  岗位起薪高  人才缺口大  市场规模大  应用范围广

大数据人才荒 待遇高规格

岗位月均薪25700元

未来国内基础性数据分析人才

缺口将达1400万

国内大数据市场产值

将突破30000亿元

“金融、电商、医疗、新零售、物联网...

行业几乎都会应用数据分析


理论、实战双向并行,奠定入行扎实基础


第一阶段


Java语言基础

Java语言基础:

Java语言入门、基本语法、面向对象、常用API、异常、集合、IO流、多线程、网络编程、反射、JDK新特性、MySQL数据库、JDBC

培养方向:

了解Java语言的特征和应用领域;掌握JDK、JRE和JVM的作用;能够成功搭建Java开发环境;完成HelloWorld程序的编写;掌握IDE工具IDEA的使用方式; 掌握Java基本语法中的常量、变量的声明和使用;掌握Java中的运算符、数据类型及其相互转换;掌握分支结构、循环结构、方法的定义和使用;掌握数组的使用,理解数组的内存结构; 掌握面向对象的编程思想;掌握类和对象的定义和使用;理解封装、继承、多态等特性;掌握抽象类、接口的特点和使用方式;充分理解并运用Java面向对象思想来进行程序开发; 掌握Java中的常用类和工具类的使用,能够使用这些常用类和工具类解决多种问题; 掌握Maven项目构建和依赖管理、掌握Maven的继承和聚合;

第二阶段


Hadoop技术栈

Hadoop技术栈

Linux、Hadoop、ZooKeeper、Hive、HBase、海王星大数据金融平台

培养方向:

掌握Linux操作系统安装及常用命令;掌握shell脚本编程; 掌握大数据架构Hadoop原理及编程应用;掌握Hadoop三大组件的使用方式、方法以及Hadoop调优; 掌握ZooKeeper协管理器工作机制以及动态感知原理及使用; 掌握Hive数据仓库的使用及调优原理; 掌握HBase数据库的开发、使用以及调优; 掌握消费金融业务处理流程;掌握根据业务制定合理技术框架(技术选型)的能力;大量数据的日志采集方案;数仓的分层搭建以及数仓建模;掌握大量数据的ETL处理方式;掌握工作流调度解决方案;掌握即席查询工具使用及其原理;掌握数据可视化报表工具的使用;掌握数据治理框架的原理以及使用;掌握集群指标监控工具的使用

职业方向:

Hadoop开发工程师、数据仓库工程师、ETL开发工程师、离线开发工程师

第三阶段


Spark技术栈

Spark技术栈

Scala、Kafka、Spark、交通流量实时可视化大屏

培养方向:

握Scala基本语法和进阶的使用,为学习Spark、Flink框架打下基础; 掌握消息队列概念、Kafka原理架构、日志合并、消息检索; 掌握分布式内存计算、RDD、DataSet、DStream概念; 掌握离线计算、流式计算; 掌握可视化大屏内在价值与用途;掌握实时流数据分析业务处理流程;掌握Flume+Kafka+Sparkstreaming+Redis架构整合;掌握Springboot的使用;掌握websocket操作使用;了解Echarts的使用方式

职业方向:

Spark开发工程师、实时开发工程师

第四阶段


Flink流式处理框架

Flink流式处理框架:

Flink、ClickHouse、畅游天涯旅游实时分析项目

培养方向:

掌握Flink的原理;掌握Flink的使用以及与其他技术的整合; 掌握ClickHouse架构、速度快的原因;掌握ClickHouse数据库和表引擎;掌握ClickHouse基本操作以及和spark、flink的整合; 掌握旅游行业业务流程;掌握Flink在实时计算业务中的使用;掌握自定义Flink source和sink来生成和消费Kafka数据;掌握Flink和ClickHouse整合已存储数据;掌握搜索引擎Elasticsearch;掌握Flink和Elasticsearch整合;掌握基于Flink CEP处理复杂事件

职业方向:

Flink开发工程师、实时开发工程师、实时数仓工程师

第五阶段


项目实战

项目实战:

EWR消费信用风险舆情系统、Monoceros物流大数据平台、物流Kubernetes+Docker项目迁移

培养方向:

掌握信贷金融业务处理流程;掌握根据业务制定合理的技术框架(技术选型);掌握当下流行的数据中台概念;掌握前台工作整体机制以及技术应用;掌握后台综合分析展示应用系统;掌握大量数据的综合采集方案;掌握大量数据的ETL处理方式;掌握工作流调度解决方案;掌握集群指标监控工具的使用; 掌握基于亿级订单的物流大数据平台的研发;掌握基于Flink实现仓库货物、仓储车运动轨迹、包裹追踪等多维度业务分析;具备基于HDP平台收集数据资源的能力,实现秒级OLAP分析; 掌握Docker容器化技术以及应用;掌握Kubernetes核心功能以及在项目中的部署应用

职业方向:

数据仓库工程师、ETL开发工程师、离线开发工程师、实时开发工程师、数据中台工程师

第六阶段


就业指导

就业指导:

企业面试前期准备与技巧、专业指导、企业面试复盘

课程内容:

职业规划讲解、简历注意事项详解、就业情况分析简历制作(个人技能、项目经验、自我评价); 简历审核修正、常见面试题的讲解、技术简历的指导与优化、强化实战项目(项目模块的介绍,业务流程的梳理); 真实面试复盘(晚自习时间)(总结学员面试中的问题,进行针对性的辅导以及相关面试题的讲解)

培养方向:

从简历、面试技巧等层面助力学员,培养学员沟通表达能力 让学员清晰了解职业发展规划,明确自身定位,找到适合自身发展的工作; 通过项目强化、面试专项指导、面试复盘等,学员能更好就业

大数据培训机构推荐十家名单:(排名不分先后)

1、达内教育

2、汇智动力

3、火星时代

4、完美动力

5、博为峰

6、天琥教育

7、CGWANG教育

8、上海交大南洋学院

9、上元教育

10、火星人教育

大数据的培训机构并没有什么排名名单,全部都是网上随便编排的排名,并没有什么作用。

  什么是大数据

  大数据技术的战略意义不在于对海量数据信息的掌握,而在于对有意义数据的专门处理。换句话说,如果把大数据比作一个行业,那么这个行业盈利的关键是提高数据的“处理能力”,通过“处理”实现数据的“增值”。随着云时代的到来,大数据越来越受到人们的关注。大数据通常被用来描述公司创建的大量非结构化和半结构化数据,这些数据需要花费大量的时间和金钱才能下载到关系数据库中进行分析。大数据分析通常与云计算练习在一起,因为对大型数据集的实时分析需要像MapReduce这样的框架来将工作分配给数十、数百甚至数千台电脑工作。

  大数据能做什么

  大数据从事开源工作,更倾向于“研发”。由于大数据是一个新兴领域,专业人才相对稀缺,高端人才是企业争夺的对象。加薪容易,职业发展潜力大。大数据职业发展方向:大数据开发、数据分析与挖掘。

  大数据开发工程师工作内容

  1、主导大数据系统的设计和构建,2、参与系统的需求分析以及数据库的设计,3、负责底层构架和核心代码的实现,4、负责相关的技术分析,主导制定技术方面相关的解决方案,5、参与制定代码的编写规范,并对工作进行指导、推动以及部署。

  大数据分析师和普通数据分析师的区别

  普通的数据分析师具有一定的数理统计基础,熟悉业务逻辑,能熟练地操作传统的数据分析软件,能使数据成为企业的智慧。他们通常遇到的都是一些结构化、体量小的小数据。而大数据分析师更专注数据获取的架构设计、数据分析模型的选择、指标的选取,他们具有数据分析师的理论素养和业务能力,面对大数据,他们有一整套分布式的数据获取、整理、处理和分析的方案,而且这个方案最终的目标是为数据分析服务,他们具有大数据分析的利器,如Hadoop、Spark等软件。

  数据质量和数据管理

  大数据分析离不开数据质量和数据管理,高质量的数据和有效的数据管理,无论是在学术研究还是在商业应用领域,都能够保证分析结果的真实和有价值。 大数据分析的基础就是以上五个方面,当然更加深入大数据分析的话,还有很多很多更加有特点的、更加深入的、更加专业的大数据分析。

  抽样的必要性有哪些

  即使在数据计算资源充足、数据采集端可以采集更多的数据并且可以通过多种方式满足时效性要求的前提下,抽样工作在很多时候也是必要的。大数据分析师平时会接触很多数据预处理工作,那么是不是每次做数据分析都要做一遍呢?答案当然不是,数据预处理是为后续的分析和建模服务的,如果后续的分析和建模不依赖于特定的数据问题,那么特定的预处理工作可以不做。

扫描二维码免费领取试听课程

报名预约

登录51乐学网

注册51乐学网

免费短信关闭