还没有找到合适的课程?赶快告诉课程顾问,让我们顾问马上联系您! 靠谱的培训课程,省时又省力!
大数据开发可以进行大数据工程师认证,数据分析类则可以进行数据分析师认证。这些证书的认证都是在你已经掌握课程的基础上进行。如果零基础可以先进行大数据相关课程学习,自学或者进行大数据培训都行,最好是先去提供认证的机构进行咨询,看看需要掌握哪些技能。
想要入门大数据,先要了解大数据生态圈
课程从大数据的基石Hadoop生态圈入手,逐步将讲解它的核心组件特性
JavaSE | JavaWeb | JavaEE 框架 |
Java 基本语法、面向对象、API、jvm 参数... | 三大框架重构EasyMall 项目、SpringBoot重构EasyMall 项目 | 3Hive、SparkMapReduce、Storm |
大数据互联网架构 | 大数据框架 | 数据挖掘与机 器学习算法 |
Springclound 整合、Redis、RabbitMQ、Lucene、ES | 离线分析、实时分析、内存分析 | Echarts、JSP、JS、EasyUI |
课程大纲
第一章:课前基础工具学习 | 第二章:课前业务知识学习 | 第三章:业务数据分析(Excel) |
・Excel 预习视频・数据库预习视频・Power BI 预习视频
解决0基础学员数据分析工具薄弱的问题
提前掌握基础数据分析工具的使用,为课程学习打好基础 |
・业务前台人员数据思维训练营
用户画像没有摸清,广告投放连本都收不回,运营流程太混乱,销售转化不理想
掌握从用户思维做营销增量,借助数据思维从商业顶层俯视业务生命周期,运用数据框架梳理公司整体业务模型 |
・表格结构数据・数据驱动型业务管理・数据埋点・数据治理・指标的设计与应用・可视化分析方法・业务分析方法・业务模型应用・业务分析报告撰写
解决实际工作中不会业务分析、不会撰写业务分析报告的问题
1、掌握依据电商、互联网、零售行业的数据分析场景介绍,撰写业务分析报告的全流程 2、掌握从客户、产品、运营、行为效果等维度出发,搭建业务指标体系,综合使用可视化分析方法、业务分析方法。 |
第四章:统计基础 | 第五章:多维数据分析 | 第六章:推断性统计 |
・数据分析的基本概念・描述性统计与数据预处理・统计分布
缺失值处理,冗余处理,数据标准化
1、掌握通过统计基础可初步掌握数据分析的基本概念 2、掌握描述性统计的数据集成 3、掌握数据标准化和数据预处理 |
・表结构数据的特征与获取・数据加工与使用・多表透视分析・透视分析方法・多维数据模型 综合实战案例:・电商综合运营分析仪表板・产品进销存追踪监控看板・电商运营分析驾驶舱・服装行业销售情况分析・地产企业盈利分析
解决使用商业智能报表分析业务、监控业务的问题
1、掌握使用 Power BI 搭建可视化分析报表的全流程; 2、掌握表结构数据的获取、加工、数仓应用、多表透视分析; 3、掌握在客户分析、产品分析、运营分析、市场分析、销售分析等场景下制作可视化分析报表 |
・参数估计・假设检验・AB Test・带检验的AB Test分析运营方案
解决实际情况中根据样本对总体特征的推断性统计问题
1、掌握假设性检验的方法 2、掌握推断性统计 3、掌握AB Test的分析运营方案 |
第七章:MySQL 数据库 | 第八章:数据管理与治理 | 第九章:数据架构 |
・数据库基本概念・DDL・DML・单表查询・多表查询・常用函数・SQL大厂面试题 实战案例:・电商多表查询・零售业多表查询
解决从数据库提取目标数据的问题,实现单表和多表查询
1、掌握 MySQL 数据库基本概念,常用函数、DDL 数据定义语言及 DML 数据操作语言 2、掌握单表查询、多表查询查询方法,查询结果排序、限制查询等方法 3、掌握大厂 MySQL 面试题 |
・企业决策的四个层次・企业数据分析能力的演进・企业运营和操作数据应用・数据管理基础知识・DMBOK 知识体系・企业数据能力建设・数据治理实操框架
提高企业的运营和数据能力建设
1、掌握企业决策的四个层次及企业数据能力建设 2、掌握企业数据分析、企业运营和操作数据应用 3、掌握数据管理基础知识和 DMBOK 知识体系 4、掌握数据治理实操框架 |
・数据架构的基本概念・数据模型介绍・数据建模基础・数据建模方法・数据建模规范化・数据建模案例
学习数据架构的基本概念,模型介绍以及建模案例
1、掌握数据架构及数据建模基础知识 2、掌握数据建模方法及数据建模规范化 3、学习数据建模案例 |
第十章:Hive SQL | 第十一章:综合项目实战 | 第十二章:Python 编程基础 |
![]() ・Linux 系统常用命令・分布式存储与计算(Hadoop)・Hive 架构原理及数据类型・HiveQL 与应用
系统安装及部署,架构原理及应用
掌握 Linux 的常用命令和分布式存储与计算,Hive 架构原理及数据类型 |
・跨国企业完整数据分析实战案例・学生探索性实操制作分析报告・项目现场专家评审与 1 V 1 指导
综合运用业务分析工具,解决数据运营和数据营销问题
老师指导还原两大数据分析项目全流程,综合使用 SQL、Excel、Power BI 等工具以及业务数据分析方法,得到高价值业务数据分析报告。 |
・Python 与 Anaconda 简介・Python 标准数据类型・Python 基本语法・控制流・自定义函数
解决海量数据处理的的编程语言基础
掌握 Python 基础编程的能力,为处理海量数据奠定基础 |
大数据培训机构推荐十家名单:(排名不分先后) 1、达内教育 2、汇智动力 3、火星时代 4、完美动力 5、博为峰 6、天琥教育 7、CGWANG教育 8、上海交大南洋学院 9、上元教育 10、火星人教育 大数据的培训机构并没有什么排名名单,全部都是网上随便编排的排名,并没有什么作用。 |
大数据采集与预处理
在大数据的生命周期中,数据采集处于第一个环节。根据MapReduce产生数据的应用系统分类,大数据的采集主要有4种来源:管理信息系统、Web信息系统、物理信息系统、科学实验系统。对于不同的数据集,可能存在不同的结构和模式,如文件、XML 树、关系表等,表现为数据的异构性。对多个异构的数据集,需要做进一步集成处理或整合处理,将来自不同数据集的数据收集、整理、清洗、转换后,生成到一个新的数据集,为后续查询和分析处理提供统一的数据视图。针对管理信息系统中异构数据库集成技术、Web 信息系统中的实体识别技术和DeepWeb集成技术、传感器网络数据融合技术已经有很多研究工作,取得了较大的进展,已经推出了多种数据清洗和质量控制工具。
大数据培训课程内容
首先在考察和理解大数据培训机构的过程中,所以培训课程的内容是最重要的因素,是能否掌握大数据开发技术的重要因素,可靠的大数据培训机构有比较完美的课程体系。也请注意无法提供课程体系的培训机构,其次是教育质量。这和老师有直接的关系。因此要有机会听课,多了解大数据培训机构的实际情况。
数据质量管理什么意思
指对数据全生命周期的每个阶段(计划、获取、存储、共享、维护、应用、消亡等)中可能引发的各类数据质量问题,进行识别、度量、监控、预警等操作,以提高数据质量的一系列管理活动。
HBase是什么
HBase是一个分布式的、面向列的开源数据库,它不同于一般的关系数据库,更适合于非结构化数据存储的数据库,是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统,大数据开发需掌握HBase基础知识、应用、架构以及高级用法等。
大数据开发工程师要求
1、本科及以上学历,5年(含)以上业务相关经验(数据分析,挖掘,建模),对数据有敏锐嗅觉,擅长报告; 2、精通大数据相关技术且不限于Hadoop相关,flink,spark,hive等; 3、熟悉数据仓库hbase,关系型数据库mysql相关技术,对其性能瓶颈及调优手段有深入理解; 4、具有优秀的抽象设计能力,思路清晰,善于思考,能独立分析和解决问题; 5、熟悉相关编程语言的一种或者几种,JAVA,Scala,R等 6、有金融行业相关经验者优先 7、拥有良好的沟通技巧和团队合作精神; 8、能承受压力,有高度的工作热情和工作积极性。
衡量关联规则挖掘结果的有效性,应该从多种综合角度来考虑:
准确性:挖掘出的规则必须反映数据的实际情况。 实用性:挖掘出的规则必须是简洁可用的。 新颖性:挖掘出的关联规则可以为用户提供新的有价值信息。
扫描二维码免费领取试听课程
登录51乐学网
注册51乐学网